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Efficient Text-to-Image Generation via Structured
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Based on:

MarkovGen: Structured Prediction for Efficient Text-to-Image Generation, Google Research, CVPR 2024.
Rethinking FID: Towards a Better Evaluation Metric for Image Generation, Google Research, CVPR 2024.
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Image Generation Methods

e Diffusion models:

o Stable Diffusion, Imagen, Dall-E 2

® Transformer-based models:

o Parti, Muse
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Image Tokenization
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Parti (Autoregressive)

ViT-VQGAN

Inference
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Muse (Parallel Decoding)

Sequential
Decoding

with Autoregressive
Transformers

Scheduled
Parallel
Decoding
with MaskGIT

® The Muse 3B model is 10x faster than Parti/Imagen 3B on TPUvA4.
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Motivation

e 8192 tokens in the vocab.

e Number of permutations:

o 2x2 patch: O(10")
o 3x3 patch: O(10%)
o 16x16 patch: O(10'%%?)

e Only a small subset of token arrangements will be “valid”.

e Highly confident tokens should be able to influence nearby
tokens
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Markov Random Fields (MRFs)

X, € 1,11}

e Define a discrete random variable XI. at each cell i.

e Connect the random variables to form a random field.

An assignment to the random field X, X, ..., X, = an image.
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Markov Random Fields (MRFs)

P(Xl:afl,XQng,...,XNZZUN):P(XZX)

P(X = x) = - exp(~ E(x)

* Maximize P(X = x) = Minimize F(X = x)
* We now need to define E(x) such that a
photorealistic image will have low E(x).
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Model Formulation

FE(x) = unary_cost + pairwise_cost

Unary Cost
e cost(X; =1) =7

® You pay a penalty if your label doesn’t agree with the
classifier.
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Model Formulation OO0 OO q
Ol0IG I0/0[0

E(x) = unary_cost + pairwise_cost QO OO0
OO0 100

Unary Cost O O v O O
e cost(X; =1) = OO HDIOIO
e You |.3'f1y a penalty if your label doesn’t agree with the Q O | >, O O
classifier. O O , O Q
Pairwise cost Q C ) @’

* cost(X; =1, X;=1")="
® You pay a penalty if you assign “incompatible” labels to
two “neighboring” pixels.
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Model Formulation olle]e O (]
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E(x) = unary_cost + pairwise_cost ~ |QO/C OI00
Unary Cost Q O ' . O O
e cost(X; =1) = OO Jee
e You pay a penalty if your label doesn’t agree with the O O | | O O
classifier. OO O
Pairwise cost @ 0 [@" &

* cost(X; =1, X;=1")="

® You pay a penalty if you assign “incompatible” labels to [COST; (X?, — l) — — logjt }
two “neighboring” pixels.

[cost(X =0, X; =10")=—c(l',")s(i, )}




e The graph is truly fully-connected.

e Spatial relationships are not fixed.

e Label compatibilities are not fixed.
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[cost(Xz- =1) = —logiti(lﬂ
cost(X; =1, X; =1") = —c(l',1")s(i, 5)




Inference Algorithm

Ex|I) = Z unary(z;) + Z pairwise(x;, z;)
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Inference Algorithm

E(x|I) = Z unary(z;) + Z pairwise(z;, ;)
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ZEI) exp (—E(x|I)) = P(X =x|I) ~ H Qi (z;)




Inference Algorithm

E(x|I) Z unary(x;) + Z pairwise(z;, ;)
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Inference Algorithm

E(x|I) Z unary(x;) + Z pairwise(z;, ;)

1>

ZEI) exp (—E(x|)) = P(X = x]T) ~ H Qi(:)

D1 (Q|P) = Eq[log(Q(x)) — log(P(x))]

[17 P.Krahenbiihl and V. Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NeurlPS ,201 |
[2] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009



Inference Algorithm

Algorithm 1 Inference Algorithm

Qi(k) < softmax(f;(k)), V(i, k)

for num_iterations do
Qi(k) Zj:l W*,;Q;(k), V(2. k)

Qi(k) ¢« Tpr—y W Qi(K'), V(i, k)
Qi(k) < Qi(k) + fi(k), V(i, k)

Qi (k) < softmax(Q;)(k), V(i, k)
end for

return ()
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MRFs for Fast Image Generation

Label compatibility
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MRFs for Fast Image Generation

Transformer
Text Prompt Model MRF Model
(e.g. Muse)
®  The heavy-lifting is done here. e  Fixes the incompatible tokens

e  Bulky, slow model e Light-weight and super fast
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Speeding Up Inference with MRFs

Model Time (ms)
Muse base (single step) 10.40
Muse super-resolution (single step) 24.00
MREF inference on base 0.29
MREF inference on super-resolution 0.29
Detokenizer 0.15
Muse 442.05

MarkovGen (ours) 281.03
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Qualitative Results

Step 1 Step 2 Step 3 Step 4

Early Exit Muse

MarkovGen

Figure 4. The first four steps of the Muse super-resolution model without (top) and with (bottom) the application of the MarkovGen MRF
model. Note that the MRF fixes complex object structures such as the dog’s face as well as texture-inconsistencies in areas such as the

brick wall. MarkovGen generates good looking high quality images starting from the first step.
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An oil painting of two rabbits in the style of American Gothic, wearing the
same clothes as in the original.
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A robot painted as graffiti on a brick wall. a sidewalk is in front of the A set of 2x2 emoji icons with happy, angry, surprised and sobbing faces. The
wall, and grass is growing out of cracks in the concrete. emoji icons look like pandas. All of the pandas are wearing colorful sunglasses.

Figure 6. Within each set of three, MarkovGen (right) speeds up Muse (left) by 1.5X and improves image quality. A similar speed up by
only reducing the step count with early exit Muse (middle) results in a significant loss of quality.



Qualitative Results
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A blue Porsche 356 A cartoon house with A bowl of Chicken Pho A photo of a teddy A heart made of wood
parked in front of a red roof bear made of water
yellow brick wall

Figure 7. Example generations of the Early Exit Muse super-resolution model running for 3 (out of 8) steps (top) and the MarkovGen
model after the application of the MRF model (bottom). We observe a significant reduction in visual artifacts, e.g., in the brick wall behind
the car. We further see key improvements to complex object structures such as the blue car and the teddy bear’s face.
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Quantitative Results
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Figure 5. Percentage of prompts for which human raters prefer images by a given model in a side-by-side comparison. We observe that
human raters strongly prefer the images generated by MarkovGen over those of both early exit Muse (left) and even the more expensive
and slower full Muse model (center).
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Rethinking FID as an Evaluation Metric for Image
Generation
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Comparing Two Image Distributions

Generated
Images



Comparing Two Distributions

Generated Real f(| mage) e R2048

Images
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Comparing Distributions

Probability Probability

| ™




Comparing Distributions - Frechet Distance

Probability Probability
M /\/\/\\
Q
X y
dist% (P,Q):= inf Exyjuyllx— y||?
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Comparing Distributions - Frechet Distance

Probability Probability
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FID LR

e Inception embeddings

o Trained only on simple scenes from the Imagenet dataset

o ~1M training images

e Fréchet distance
o (Gaussian assumption

o Need to estimate a large (2048x2048) covariance matrix

o Biased estimator [1]

[1] Min Jin Chong, David Forsyth. Effectively Unbiased FID and Inception Score and Where to Find Them, CVPR 2020.
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Test

Result

Mardia’s Skewness Test

X Reject (p-value 0.0)

Mardia’s Kurtosis Test

X Reject (p-value 0.0)

Henze-Zirkler Test

X Reject (p-value 0.0)

t-SNE visualization of Inception embeddings on the COCO 30K dataset



CMMD
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X Weak image embeddings

X Incorrect normality assumption

X Sample inefficient —
FID

X Biased estimator =

X Weak image embeddings
v Distribution-free
v’ Sample efficient

v Unbiased estimator

v Rich image embeddings
X Incorrect normality assumption
X Sample inefficient

X Biased estimator

v Rich image embeddings
v Distribution-free
v" Sample efficient CMMD

v Unbiased estimator



Model-A

Model-B

Human Evaluation
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Model

Model-A Model-B

FID
FID;
KID
CMMD

Human rater preference

21.40 18.42
20.16 17.19
0.0105 0.0080
0.721 0.951

92.5% 6.9%

CMMD correlates better with human perception of quality.

Table 3. Human evaluation. FID and KID contradict human eval-
uation while CMMD agrees. Lower is better for all metrics.
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CMMD is More Efficient

* CMMD = FID

80.0 0.80
Operation Time
Fréchet distance 7007.59 + 231 ms
G0 oo MMD distance 71.42 £ 0.67 ms
Inception model inference ~ 2.076 £ 0.15 ms
CLIP model inference 1.955 £ 0.14 ms
40.0 0.60
Table 4. Comparing runtime for computing Fréchet/MMD dis-
tances and Inception/CLIP feature extractions.
20.0 | ! . | | - 0.50

5000 10000 15000 20000 25000 30000
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Conclusion /

® Discrete token based image generations models integrate better with LLMs
® They can be made efficient using MRF-based structural prediction methods
e FID is far from ideal for image-generative model evaluation

e CMMD fixes some of FID's shortcomings
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