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Image Tokenization
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Parti (Autoregressive)



Muse (Parallel Decoding)

● The Muse 3B model is 10x faster than Parti/Imagen 3B on TPUv4.
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● Number of permutations:
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● Only a small subset of token arrangements will be “valid”.

● Highly confident tokens should be able to influence nearby 
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Markov Random Fields (MRFs)

● Define a discrete random variable Xi at each cell i.

● Connect the random variables to form a random field.

● An assignment to the random field X1, X2, …, XN ⇒ an image.

X1 ∈ {l1, l2, …, lL}

XN ∈ {t1, t2, …, tV}



Markov Random Fields (MRFs)

•  
• We now need to define         such that a 

photorealistic image will have low        .
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Difference Compared to Semantic Segmentation

● The graph is truly fully-connected.

● Spatial relationships are not fixed.

● Label compatibilities are not fixed.
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[1] P. Krähenbühl and V. Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NeurIPS , 2011
[2] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
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MRFs for Fast Image Generation



MRFs for Fast Image Generation

Transformer 
Model

(e.g. Muse)
MRF ModelText Prompt

● The heavy-lifting is done here.

● Bulky, slow model

● Fixes the incompatible tokens

● Light-weight and super fast



Speeding Up Inference with MRFs
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Rethinking FID as an Evaluation Metric for Image 
Generation

Part II:



Comparing Two Image Distributions

Generated 
Images

Real 
Images

.

.

.

.

.

.



Comparing Two Distributions

Generated 
Images

Real 
Images

f(Image) ∈ ℝ2048

.

.

.

.

.

.



Comparing Distributions
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FID

● Inception embeddings

○ Trained only on simple scenes from the Imagenet dataset

○ ~1M training images

● Fréchet distance

○ Gaussian assumption

○ Need to estimate a large (2048x2048) covariance matrix

○ Biased estimator [1]

[1] Min Jin Chong, David Forsyth. Effectively Unbiased FID and Inception Score and Where to Find Them, CVPR 2020.



Gaussian Assumption on Inception Embeddings

Test Result

Mardia’s Skewness Test ✗ Reject (𝑝-value 0.0)

Mardia’s Kurtosis Test ✗ Reject (𝑝-value 0.0)

Henze-Zirkler Test ✗ Reject (𝑝-value 0.0)

t-SNE visualization of Inception embeddings on the COCO 30K dataset



CMMD
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● CMMD correlates better with human perception of quality.



CMMD is More Efficient



Conclusion

● Discrete token based image generations models integrate better with LLMs

● They can be made efficient using MRF-based structural prediction methods

● FID is far from ideal for image-generative model evaluation

● CMMD fixes some of FID's shortcomings



Thank you!


